Mechanics of the human femoral adventitia including the high-pressure response.

نویسندگان

  • Christian A J Schulze-Bauer
  • Peter Regitnig
  • Gerhard A Holzapfel
چکیده

Adventitial mechanics were studied on the basis of adventitial tube tests and associated stress analyses utilizing a thin-walled model. Inflation tests of 11 nonstenotic human femoral arteries (79.3 +/- 8.2 yr, means +/- SD) were performed during autopsy. Adventitial tubes were separated anatomically and underwent cyclic, quasistatic extension-inflation tests using physiological pressures and high pressures up to 100 kPa. Associated circumferential and axial stretches were typically <20%, indicating "adventitiosclerosis." Adventitias behaved nearly elastically for both loading domains, demonstrating high tensile strengths (>1 MPa). The anisotropic and strongly nonlinear mechanical responses were represented appropriately by two-dimensional Fung-type stored-energy functions. At physiological pressure (13.3 kPa), adventitias carry ~25% of the pressure load in situ, whereas their circumferential and axial stresses were similar to the total wall stresses (~50 kPa in both directions), supporting a "uniform stress hypothesis." At higher pressures, they became the mechanically predominant layer, carrying >50% of the pressure load. These significant load-carrying capabilities depended strongly on circumferential and axial in-vessel prestretches (mean values: 0.95 and 1.08). On the basis of these results, the mechanical role of the adventitia at physiological and hypertensive states and during balloon angioplasty was characterized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying Renal Artery Bifurcation Structure in Male Dogs

Introduction: Arteries are made up three layers; tunica intima, tunica media, and tunica adventitia. However, in some part of the artery this structure may change. The greatest change occurs at the junctions and bifurcations. In this regard, we decided to study the renal artery bifurcation just where the renal arteries divide into smaller arteries before entering the kidney. Methods: The struc...

متن کامل

An investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study

Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...

متن کامل

DYNAMIC SIMULATION OF A HIGH PRESSURE REGULATOR

In this paper, the dynamic simulation for a high pressure regulator is performed to obtain the regulator behavior. To analyze the regulator performance, the equation of motion for inner parts, the continuity equation for diverse chambers and the equation for mass flow rate were derived. Because of nonlinearity and coupling, these equations are solved using numerical methods and the results are ...

متن کامل

Microstructure and mechanics of human resistance arteries

Vascular diseases such as diabetes and hypertension cause changes to the vasculature that can lead to vessel stiffening and the loss of vasoactivity. The microstructural bases of these changes are not presently fully understood. We present a new methodology for stain-free visualization, at a microscopic scale, of the morphology of the main passive components of the walls of unfixed resistance a...

متن کامل

A method for the quantification of the pressure dependent 3D collagen configuration in the arterial adventitia.

Collagen plays an important role in the response of the arterial wall to mechanical loading and presumably has a load-bearing function preventing overdistension. Collagen configuration is important for understanding this role, in particular in mathematical models of arterial wall mechanics. In this study a new method is presented to image and quantify this configuration. Collagen in the arteria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 282 6  شماره 

صفحات  -

تاریخ انتشار 2002